Globális jelenségek
Ez a kérdés bennem is felmerült, de ha ez így lenne, akkor szerintem annak esetleg lehetnének 200 évesnél kisebb periódusú változékonyságai, amik talán meglátszódnának a diagramon is.
Ha van is szivárgás (valószínûleg van), az talán van annyira kicsi, hogy a kiszivárgó CO2-t az idõjárás elkeveri, ugyanis egy ilyen kis területen azok a légköri folyamatok (turbulens keveredés) is elegendõek az elkeveréshez, melyeknek az idõskálája inkább órákban mérhetõ. Másrészt ezek miatt a megmaradó esetleges változékonyságot a CO2 napi menete el is nyomhatja. Ezen kívül úgy tudom, mûholdas méréssel nem mutatható ki a CO2 nagyobb koncentrációja a sziget körül. Emiatt az az általános vélekedés, hogy túl nagy hibát nem követnek el azzal, ha ott mérnek.
A lényeg, hogy magam is azt gondolom, fenntartásokkal kell kezelni az ottani mérést, de a hiba valószínûleg nem égbekiáltó.
Még valami: a CO2-szivárgás egy kialudt vulkánnál már olyan lassú tud lenni, hogy ha fúj egy kis szél, akkor azt már a talaj fölötti pár centirõl elviszi, így a szivárgás nem igazán okoz koncentrációnövekedést pl. 1-2m-en. (Ez viszont még nem elég az elkeveréshez, "felhõkben" is haladhat a felemelt CO2, és az szerencsétlen esetben odakerülhet a mérõhöz.)
Ha van is szivárgás (valószínûleg van), az talán van annyira kicsi, hogy a kiszivárgó CO2-t az idõjárás elkeveri, ugyanis egy ilyen kis területen azok a légköri folyamatok (turbulens keveredés) is elegendõek az elkeveréshez, melyeknek az idõskálája inkább órákban mérhetõ. Másrészt ezek miatt a megmaradó esetleges változékonyságot a CO2 napi menete el is nyomhatja. Ezen kívül úgy tudom, mûholdas méréssel nem mutatható ki a CO2 nagyobb koncentrációja a sziget körül. Emiatt az az általános vélekedés, hogy túl nagy hibát nem követnek el azzal, ha ott mérnek.
A lényeg, hogy magam is azt gondolom, fenntartásokkal kell kezelni az ottani mérést, de a hiba valószínûleg nem égbekiáltó.
Még valami: a CO2-szivárgás egy kialudt vulkánnál már olyan lassú tud lenni, hogy ha fúj egy kis szél, akkor azt már a talaj fölötti pár centirõl elviszi, így a szivárgás nem igazán okoz koncentrációnövekedést pl. 1-2m-en. (Ez viszont még nem elég az elkeveréshez, "felhõkben" is haladhat a felemelt CO2, és az szerencsétlen esetben odakerülhet a mérõhöz.)
Cauchy-hoz csatlakozva, én is örülök az adataidnak, mi több, kifejezetten várom a folytatásokat, és kérnélek is rá, hogy oszd meg velünk õket, hátha sikerül -ha csak pislákolva is-, de fényt vinni a sötétségbe....
Számokkal olyanokat nem gyõzöl meg, akik "nem hisznek" a matematikában. És pont ezek terjesztik és hiszik el a legképtelenebb összeesküvés-elméleteket is.
Az emberek többsége olyan alapvetõ dolgokat nem ismer, hogy nem csoda ha képtelen magyarázatot találni egyes jelenségekre, a tapasztalatom az ,hogy pl a gimnáziumi diákság (de a tanárokkal is ez a helyzet) nagy része semmit sem tud a légköri folyamatokról, a felhõképzõdésrõl, a meteorológia matematikai hátterérõl.
Azt se tudják pl h télen miért van hidegebb vagy miért hosszabbak a nappalok nyáron, vagy hogy az esõ, a csapadék egy térben korlátos dolog, sokszor meglepõdve mondják: a városban nem is esett, itt meg mekkora esõ volt.
Ekkora tudatlan tömeg pedig fogékony az ezotériás humbugra, ami egyszerû szavakkal megmagyarázza pl, hogy xy azért lett tolvaj, mert a merkur jegyében született hold aszcendenssel, és az energiavámpírok elszívták az életenergiáját...
Viszont én kifejezetten élvezem ezeket a beírásokat, jó látni ,hogy valahol valakik még dolgoznak a sötétség erõi ellen
Az emberek többsége olyan alapvetõ dolgokat nem ismer, hogy nem csoda ha képtelen magyarázatot találni egyes jelenségekre, a tapasztalatom az ,hogy pl a gimnáziumi diákság (de a tanárokkal is ez a helyzet) nagy része semmit sem tud a légköri folyamatokról, a felhõképzõdésrõl, a meteorológia matematikai hátterérõl.
Azt se tudják pl h télen miért van hidegebb vagy miért hosszabbak a nappalok nyáron, vagy hogy az esõ, a csapadék egy térben korlátos dolog, sokszor meglepõdve mondják: a városban nem is esett, itt meg mekkora esõ volt.
Ekkora tudatlan tömeg pedig fogékony az ezotériás humbugra, ami egyszerû szavakkal megmagyarázza pl, hogy xy azért lett tolvaj, mert a merkur jegyében született hold aszcendenssel, és az energiavámpírok elszívták az életenergiáját...
Viszont én kifejezetten élvezem ezeket a beírásokat, jó látni ,hogy valahol valakik még dolgoznak a sötétség erõi ellen
Még valami, az "elsivatagosdással" van némi gond, legalábbis az elõrejelzéssel és ezzel is:
Link
Igaz itt már mindössze 10%-os csökkenésrõl írnak no ez nekem is új:-) De legalább van némi új gondolat errõl a részrõl is:-)
Itt meg a mért értékek a fõvársora vetítve, évtizedes bontásban átlagolva.
Csapadék: legszárazabbaktól:
1860-1869: 445,9 mm
1940-1949: 489,4 mm
1980-1989: 490,6 mm
1850-1859: 497,9 mm
1900-1909: 506,2 mm
1841-1849: 508,6 mm ( csak 9 év átlaga van itt meg)
1970-1979: 511,7 mm
1920-1929: 517,3 mm
1890-1899: 523,2 mm
1990-1999: 530,6 mm
1950-1959: 531,4 mm
2000-2009: 552,1 mm
1960-1969: 556,3 mm
1910-1919: 569,0 mm
1870-1879: 561,3 mm
1930-1939: 584,1 mm
1880-1889: 585,0 mm
Háát igen pont az utóbbi évtized az egyik legcsapadékosabb a 17 évtized adatsora között:-) És 1900-tól kezdve a 4. legcsapadékosabb a 11 évtized között, hogy van mégis csökkenés? Ez megfejethetetlen számomra.
Ráadásul a legszárazabb évtizedtõl az utóbbi évtized 106,2 mm-el csapadékosabb és a legcsapadékosabb évtizedtõl mindössze 32,1 mm-el marad el! Hmm, valami nagyon nem stimmel, vagy velünk akarnak megetetni nagyon valamit?!:-)))))
A 2010-es és a 2011-es évek nincsen benne, de rövid számítás után és az idei évet belevéve ismét egy hasonló csapadékos periódusban vagyunk mint az elõzõ volt, egy-egy szélsõséges év mindig benne volt a pakliban ezzel nincs nagy gond, de sivatagosodásról szó nincsen. Mindenki vonja le a következtetéseket modellek, diagramok és elõrejelzések nélkül, puszta a ténybõl, és a számokból ami érthetõ és egyértelmû.
Link
Igaz itt már mindössze 10%-os csökkenésrõl írnak no ez nekem is új:-) De legalább van némi új gondolat errõl a részrõl is:-)
Itt meg a mért értékek a fõvársora vetítve, évtizedes bontásban átlagolva.
Csapadék: legszárazabbaktól:
1860-1869: 445,9 mm
1940-1949: 489,4 mm
1980-1989: 490,6 mm
1850-1859: 497,9 mm
1900-1909: 506,2 mm
1841-1849: 508,6 mm ( csak 9 év átlaga van itt meg)
1970-1979: 511,7 mm
1920-1929: 517,3 mm
1890-1899: 523,2 mm
1990-1999: 530,6 mm
1950-1959: 531,4 mm
2000-2009: 552,1 mm
1960-1969: 556,3 mm
1910-1919: 569,0 mm
1870-1879: 561,3 mm
1930-1939: 584,1 mm
1880-1889: 585,0 mm
Háát igen pont az utóbbi évtized az egyik legcsapadékosabb a 17 évtized adatsora között:-) És 1900-tól kezdve a 4. legcsapadékosabb a 11 évtized között, hogy van mégis csökkenés? Ez megfejethetetlen számomra.
Ráadásul a legszárazabb évtizedtõl az utóbbi évtized 106,2 mm-el csapadékosabb és a legcsapadékosabb évtizedtõl mindössze 32,1 mm-el marad el! Hmm, valami nagyon nem stimmel, vagy velünk akarnak megetetni nagyon valamit?!:-)))))
A 2010-es és a 2011-es évek nincsen benne, de rövid számítás után és az idei évet belevéve ismét egy hasonló csapadékos periódusban vagyunk mint az elõzõ volt, egy-egy szélsõséges év mindig benne volt a pakliban ezzel nincs nagy gond, de sivatagosodásról szó nincsen. Mindenki vonja le a következtetéseket modellek, diagramok és elõrejelzések nélkül, puszta a ténybõl, és a számokból ami érthetõ és egyértelmû.
Néhány alapinfót megosztanék CO2-ügyben.
Fontos tudni, hogy a légköri üvegházhatás nélkül kb. 33°C-kal lenne alacsonyabb a globális átlaghõmérséklet. Ebbõl a vízgõz 15°C-ot, a CO2 7°C-ot tesz ki, a metán 4-5°C-ot, a maradékon a többiek (H2S, SO2, illékony szerves anyagok, freonok, halonok) osztoznak.
Nagyon fontos tudni megkülönböztetni a gázokat az ún. légköri tartózkodási idõ alapján. Eszerint vannak
1) rövid tartózkodás idejû gázok, amik (ha nem lenne utánpótlásuk) pár nap alatt kiürülnének. Ide tartozik a vízgõz is. Idõben is erõsen változékony a koncentrációjuk, és térben is igen nagy inhomogenitást mutatnak.
2) közepes tartózkodás idejû gázok, amik kb. hónapokig, vagy pár évig maradnak a légkörben. Az õ koncentrációjuk még mindig nagyon változékony, de egy-egy olyan területen, ahol nincsen sem forrása, sem nyelõje, ott már viszonylag jól el tud keveredni. Az õ egyensúlyi koncentrációjukat a légkör egy adott térfogatában erõsen befolyásolják a nyelõk és a források jelenléte. Pl. az ózon az ózonrétegben sûrûsödik, mert ott a források gyorsabban termelik, mint pl. idelent.
3) hosszú tartózkodás idejû gázok, amik az évtizedtõl akár a "végtelenségig" képesek a levegõben maradni. Ilyen pl. a CO2 és a metán, néhány száz éves tartózkodási idõvel (illetve nem meglepõ módon az N2 és az O2 pl. több millió éves tartózkodási idõvel). Ezek azok, melyek a sztratopauzáig teljesen egyenletesen oszlanak el, s inhomogenitásuk csak azokon a "pontokon" van, ahol kis területen nagy mennyiségben kerülnek a légkörbe (mint pl. a gyártelepek).
Ez utóbbi esetben éppen azért rakták fel pl. a Hawaii obszervatóriumot a hegyre, mert azt gondolják, hogy ott, az óceán közepén, kb. 4km magasan reprezentatívan tudják mérni azt az értéket, ami a légkörben van. Ez valószínûleg nagyjából igaz is. Persze a hosszú tartózkodási idejõ gázok esetében is marad inhomogenitás, de annak mértéke a gáz koncentrációjánál általában 2-3 nagyságrenddel kisebb.
Egy-egy üvegházhatású gázhoz levezethetõ annak sugárzási kényszere.
A fény a molekulákon Rayleigh-szórással szóródik, ennek a foton+gáz rendszernek a statisztikájából levezethetõ az üvegházhatás termodinamikai modellje. Sajnos ezt nem ismerem részletesen, de az jön ki, hogy kb. a koncentráció logaritmusával arányos a rendszer hõmérséklete. (Ez nagyon pici koncentrációnál valószínûleg nem igaz, de a légkörben már bõven.) Tehát ha a koncentráció megduplázódása okoz k*dT hõmérséklet emelkedést, akkor a következõ k*dT emelkedéshez az új koncentrációnak kell duplázódnia, vagyis az eredetinek már négyszerezõdnie. (A k arányossági tényezõ a gázra jellemzõ, valahogy azt akarja kifejezni, hogy a gáz mennyire erõsen üvegházhatású: pl. k(CH4)=kb. 20*k(CO2).)
Sõt: az elmélet valószínûleg nem csak nagyon kicsi, hanem nagyon nagy koncentrációra sem igaz: valószínûleg a logaritmikusan növõ taggal szemben egy negatív elõjelû tag dominánssá válik, és a hõmérséklet elkezd csökkenni (effektíve a gáz elkezdi inkább visszaverni a sugárzást, mint elnyelni).
Ezek az elméletek már nagyjából készen vannak, a profibb klímamodellekbe is bele vannak építve. A gond általában nem itt kezdõdik, hanem a felszín-légkör kölcsönhatásokkal. Azokból tényleg nagyon sok van, amit még nem ismerünk, valószínûleg sokat fel sem fedeztünk még, úgy meg elég nehéz modellezni õket. A tudósok is itt keresgélnek elsõsorban. A tisztán légköri folyamatokat sokkal jobban ismerjük.
Fontos tudni, hogy a légköri üvegházhatás nélkül kb. 33°C-kal lenne alacsonyabb a globális átlaghõmérséklet. Ebbõl a vízgõz 15°C-ot, a CO2 7°C-ot tesz ki, a metán 4-5°C-ot, a maradékon a többiek (H2S, SO2, illékony szerves anyagok, freonok, halonok) osztoznak.
Nagyon fontos tudni megkülönböztetni a gázokat az ún. légköri tartózkodási idõ alapján. Eszerint vannak
1) rövid tartózkodás idejû gázok, amik (ha nem lenne utánpótlásuk) pár nap alatt kiürülnének. Ide tartozik a vízgõz is. Idõben is erõsen változékony a koncentrációjuk, és térben is igen nagy inhomogenitást mutatnak.
2) közepes tartózkodás idejû gázok, amik kb. hónapokig, vagy pár évig maradnak a légkörben. Az õ koncentrációjuk még mindig nagyon változékony, de egy-egy olyan területen, ahol nincsen sem forrása, sem nyelõje, ott már viszonylag jól el tud keveredni. Az õ egyensúlyi koncentrációjukat a légkör egy adott térfogatában erõsen befolyásolják a nyelõk és a források jelenléte. Pl. az ózon az ózonrétegben sûrûsödik, mert ott a források gyorsabban termelik, mint pl. idelent.
3) hosszú tartózkodás idejû gázok, amik az évtizedtõl akár a "végtelenségig" képesek a levegõben maradni. Ilyen pl. a CO2 és a metán, néhány száz éves tartózkodási idõvel (illetve nem meglepõ módon az N2 és az O2 pl. több millió éves tartózkodási idõvel). Ezek azok, melyek a sztratopauzáig teljesen egyenletesen oszlanak el, s inhomogenitásuk csak azokon a "pontokon" van, ahol kis területen nagy mennyiségben kerülnek a légkörbe (mint pl. a gyártelepek).
Ez utóbbi esetben éppen azért rakták fel pl. a Hawaii obszervatóriumot a hegyre, mert azt gondolják, hogy ott, az óceán közepén, kb. 4km magasan reprezentatívan tudják mérni azt az értéket, ami a légkörben van. Ez valószínûleg nagyjából igaz is. Persze a hosszú tartózkodási idejõ gázok esetében is marad inhomogenitás, de annak mértéke a gáz koncentrációjánál általában 2-3 nagyságrenddel kisebb.
Egy-egy üvegházhatású gázhoz levezethetõ annak sugárzási kényszere.
A fény a molekulákon Rayleigh-szórással szóródik, ennek a foton+gáz rendszernek a statisztikájából levezethetõ az üvegházhatás termodinamikai modellje. Sajnos ezt nem ismerem részletesen, de az jön ki, hogy kb. a koncentráció logaritmusával arányos a rendszer hõmérséklete. (Ez nagyon pici koncentrációnál valószínûleg nem igaz, de a légkörben már bõven.) Tehát ha a koncentráció megduplázódása okoz k*dT hõmérséklet emelkedést, akkor a következõ k*dT emelkedéshez az új koncentrációnak kell duplázódnia, vagyis az eredetinek már négyszerezõdnie. (A k arányossági tényezõ a gázra jellemzõ, valahogy azt akarja kifejezni, hogy a gáz mennyire erõsen üvegházhatású: pl. k(CH4)=kb. 20*k(CO2).)
Sõt: az elmélet valószínûleg nem csak nagyon kicsi, hanem nagyon nagy koncentrációra sem igaz: valószínûleg a logaritmikusan növõ taggal szemben egy negatív elõjelû tag dominánssá válik, és a hõmérséklet elkezd csökkenni (effektíve a gáz elkezdi inkább visszaverni a sugárzást, mint elnyelni).
Ezek az elméletek már nagyjából készen vannak, a profibb klímamodellekbe is bele vannak építve. A gond általában nem itt kezdõdik, hanem a felszín-légkör kölcsönhatásokkal. Azokból tényleg nagyon sok van, amit még nem ismerünk, valószínûleg sokat fel sem fedeztünk még, úgy meg elég nehéz modellezni õket. A tudósok is itt keresgélnek elsõsorban. A tisztán légköri folyamatokat sokkal jobban ismerjük.