Modell-iskola
Hogy mit ne mondjak, a viharvadászatokhoz megint teljesen más dolgokat kell tudni .
Az ilyen egész Európát lefedõ térképeken a ciklonok, anticiklonok, nagy térségû áramlások látszanak, ami az ún. szinoptikus skála (1000km-es nagyságrendû térbeli skála) idõjárási folyamatait mutatja. Az ilyen térbeli kiterjedésû légköri képzõdmények kvázi-kétdimenziósak, ami azt jelenti, hogy a függõleges irányú áramlások sebessége a vízszintes irányúakéhoz képest több nagyságrenddel kisebb.
(
Az ilyen tértartományú (pl. globális) modelleknek 10-25km, vagy fél-negyed földrajzi fok körüli a rácsfelbontása, ennél kisebb méretû hullámokat nem adnak vissza. Emiatt a függõleges sebességet diagnosztikai úton számolja (a sebességmezõ 3D-s divergenciája nulla, mivel a levegõ összenyomhatatlannak tekinthetõ /már ez is közelítés egyébként/, így a vízszintes 2D-s divergencia egyenlõ a függõleges sebesség függõleges irányú megváltozásával.)
Ez talán túl matematikai, de annyiból fontos, hogy a zivatarok viszont éppen olyan rendszerek, ahol a függõleges sebesség válik sokkal nagyobbá, mint a vízszintes. Azonban a zivatarok kiterjedése nagyon kicsi (akár kisebb, mint 1km), ami az õket leíró modellektõl néhány száz méteres rácsfelbontást követelne meg. Ezt ma még csak úgy lehet megcsinálni, ha a modell teljes tartománya nem nagyobb egy Magyarországnyi területnél, ugyanis a legszuperebb szuperszámítógépek sem tudnák kiszámolni megfelelõen gyorsan az idõjárást egy ilyen felbontású globálmodell esetén.
)
Visszatérve a zárójel elõttihez: a zivatarok a szinoptikus skálához képest jóval kisebb méretûek. A zivatarrendszerek 200-500km-es kiterjedésûek, ami az ún. mezoskála (mint mérettartomány).
Természetesen mindkét skálán ugyanaz a légköri kormányzó egyenletrendszer, csak amikor meg akarod oldani õket (pl. modellt akarsz gyártani), akkor más elhanyagolásokat teszel az egyik és a másik esetben. Ez más mozgásrendszereket (szinte "más fizikát") eredményez. /Bonyolultnak hangzik talán, de ismerõs lesz: a szinoptikus skálán ciklonokat, anticiklonokat kapsz, míg a mezoskálán zivatarokat . Emellett mindkét skálán megkapod a légköri frontokat is./
Ugyanakkor a mezoskálán való elemzéshez is tudni kell a szinoptikus skála eseményeit, hiszen pl. a függõleges gyorsulásra (amit szinoptikus skálán nem tudsz leírni) adódó egyenletben megjelenik a magaslégköri divergencia, amit a szinoptikus skála mozgásrendszere határoz meg.
Ez most kicsit bonyolultra sikeredett, remélem azért még érthetõ.
A mondandóm lényegének alapja tehát, hogy a légkörben különbözõ mozgásrendszerek léteznek, melyek különbözõ nagyságrendi skálákhoz tartoznak. Ezeken a skálákon bizonyos okokból különbözõképpen tehetsz elhanyagolásokat a légköri kormányzó egyenletrendszerben (és éppen ezek okozzák a különbözõ skálák különbözõ mozgásrendszereit).
Még annyi pluszt teszek hozzá, hogy a szinoptikus skálán a modelleken egy az egyben megjelennek a ciklonok, anticiklonok, és azok a legtöbb esetben 4-5-6 napra elõre általában ott (vagy valahol a közelben) meg is fognak jelenni. Ugyanakkor egy mezoskálájú modellben a zivatarok, ha meg is jelennek, még 2 óra múlva sem biztos, hogy a valóságban is megjelenik, vagy ha megjelenik, akkor is esetleg teljesen máshol. Ez az adott légköri képzõdmények élettartamával függ össze. A nagy méretûek sokáig élnek (szinop skálán néhány nap, 1-2 hét), míg a kicsik csak rövid ideig (zivatarok kb. fél órától fél napig élhetnek).
Itt jön be a nowcasting, ami a viharvadászathoz elengedhetetlen (errõl késõbb).
Elõszöris a zivatarok esetében éppen az elõbb leírtak miatt a térképen nem azt kell nézni, hogy mikor hol vannak rajta a cellák. A zivatarok kialakulásának feltételeit egyéb paraméterek (CAPE, SRH, és ezer más) bizonyos értékei szabják meg, melyeket származtatnak az alapmennyiségekbõl (T-bõl, nedvességbõl, szélbõl), amit viszont a szinoptikus skálájú modellek is számolnak. /Ezeket már a modellkimenet megjelenítésekor számolják sokszor, s így a globálmodellbõl is kijön. A mezoskálájú modell ilyenkor azért jó, mert egyszerûen pontosabban számol./ Azt kell nézni, hogy ezek az értékek mikor, milyen területen megfelelõek zivatar képzõdéséhez. Ezen belül a zivatar kialakulását sokszor az határozza meg, hogy a területen belül hol milyen a talajtípus, növényzet, talajvízszint, stb. (Pl. A szomszédban erdõben fekete erdõtalaj van, amit jobban melegít a Nap, mint nálam a szántóföldet, ezért az erdõ fölött fog megindulni a feláramlás, ott alakul ki a zivatar). A nowcasting feladata éppen az, hogy a méréseket figyeli, és abból, hogy hol alakult ki az elsõ zivatarcella, és merre megy, megpróbálja megbecsülni, hogy egy óra múlva hol fog zivatarlánc összeállni. Figyelni kell azt is, ha esetleg a zivatarok olyan helyen indultak meg, ahol nem voltak annyira jók a feltételek a modell szerint, attól még lehet, hogy a valóságban mégis ott lettek jobbak (a vártnál arrébb ment a meleg nedves szállítószalag pl.)
Na, most már jól megkavartalak , csak egy kis ízelítõt próbáltam adni arra, mennyire bonyolult tudomány a meteorológia, a viharvadászat meg pláne. Célom az volt elsõsorban, hogy megmutassam, hogy nagyjából milyen irányban kell továbbhaladni az alapok (dinamikus és szinoptikus meteorológia) után, hogy a viharvadászat szakmai tudományos alapjait megismerd. Remélem, tudtam segíteni .
Az ilyen egész Európát lefedõ térképeken a ciklonok, anticiklonok, nagy térségû áramlások látszanak, ami az ún. szinoptikus skála (1000km-es nagyságrendû térbeli skála) idõjárási folyamatait mutatja. Az ilyen térbeli kiterjedésû légköri képzõdmények kvázi-kétdimenziósak, ami azt jelenti, hogy a függõleges irányú áramlások sebessége a vízszintes irányúakéhoz képest több nagyságrenddel kisebb.
(
Az ilyen tértartományú (pl. globális) modelleknek 10-25km, vagy fél-negyed földrajzi fok körüli a rácsfelbontása, ennél kisebb méretû hullámokat nem adnak vissza. Emiatt a függõleges sebességet diagnosztikai úton számolja (a sebességmezõ 3D-s divergenciája nulla, mivel a levegõ összenyomhatatlannak tekinthetõ /már ez is közelítés egyébként/, így a vízszintes 2D-s divergencia egyenlõ a függõleges sebesség függõleges irányú megváltozásával.)
Ez talán túl matematikai, de annyiból fontos, hogy a zivatarok viszont éppen olyan rendszerek, ahol a függõleges sebesség válik sokkal nagyobbá, mint a vízszintes. Azonban a zivatarok kiterjedése nagyon kicsi (akár kisebb, mint 1km), ami az õket leíró modellektõl néhány száz méteres rácsfelbontást követelne meg. Ezt ma még csak úgy lehet megcsinálni, ha a modell teljes tartománya nem nagyobb egy Magyarországnyi területnél, ugyanis a legszuperebb szuperszámítógépek sem tudnák kiszámolni megfelelõen gyorsan az idõjárást egy ilyen felbontású globálmodell esetén.
)
Visszatérve a zárójel elõttihez: a zivatarok a szinoptikus skálához képest jóval kisebb méretûek. A zivatarrendszerek 200-500km-es kiterjedésûek, ami az ún. mezoskála (mint mérettartomány).
Természetesen mindkét skálán ugyanaz a légköri kormányzó egyenletrendszer, csak amikor meg akarod oldani õket (pl. modellt akarsz gyártani), akkor más elhanyagolásokat teszel az egyik és a másik esetben. Ez más mozgásrendszereket (szinte "más fizikát") eredményez. /Bonyolultnak hangzik talán, de ismerõs lesz: a szinoptikus skálán ciklonokat, anticiklonokat kapsz, míg a mezoskálán zivatarokat . Emellett mindkét skálán megkapod a légköri frontokat is./
Ugyanakkor a mezoskálán való elemzéshez is tudni kell a szinoptikus skála eseményeit, hiszen pl. a függõleges gyorsulásra (amit szinoptikus skálán nem tudsz leírni) adódó egyenletben megjelenik a magaslégköri divergencia, amit a szinoptikus skála mozgásrendszere határoz meg.
Ez most kicsit bonyolultra sikeredett, remélem azért még érthetõ.
A mondandóm lényegének alapja tehát, hogy a légkörben különbözõ mozgásrendszerek léteznek, melyek különbözõ nagyságrendi skálákhoz tartoznak. Ezeken a skálákon bizonyos okokból különbözõképpen tehetsz elhanyagolásokat a légköri kormányzó egyenletrendszerben (és éppen ezek okozzák a különbözõ skálák különbözõ mozgásrendszereit).
Még annyi pluszt teszek hozzá, hogy a szinoptikus skálán a modelleken egy az egyben megjelennek a ciklonok, anticiklonok, és azok a legtöbb esetben 4-5-6 napra elõre általában ott (vagy valahol a közelben) meg is fognak jelenni. Ugyanakkor egy mezoskálájú modellben a zivatarok, ha meg is jelennek, még 2 óra múlva sem biztos, hogy a valóságban is megjelenik, vagy ha megjelenik, akkor is esetleg teljesen máshol. Ez az adott légköri képzõdmények élettartamával függ össze. A nagy méretûek sokáig élnek (szinop skálán néhány nap, 1-2 hét), míg a kicsik csak rövid ideig (zivatarok kb. fél órától fél napig élhetnek).
Itt jön be a nowcasting, ami a viharvadászathoz elengedhetetlen (errõl késõbb).
Elõszöris a zivatarok esetében éppen az elõbb leírtak miatt a térképen nem azt kell nézni, hogy mikor hol vannak rajta a cellák. A zivatarok kialakulásának feltételeit egyéb paraméterek (CAPE, SRH, és ezer más) bizonyos értékei szabják meg, melyeket származtatnak az alapmennyiségekbõl (T-bõl, nedvességbõl, szélbõl), amit viszont a szinoptikus skálájú modellek is számolnak. /Ezeket már a modellkimenet megjelenítésekor számolják sokszor, s így a globálmodellbõl is kijön. A mezoskálájú modell ilyenkor azért jó, mert egyszerûen pontosabban számol./ Azt kell nézni, hogy ezek az értékek mikor, milyen területen megfelelõek zivatar képzõdéséhez. Ezen belül a zivatar kialakulását sokszor az határozza meg, hogy a területen belül hol milyen a talajtípus, növényzet, talajvízszint, stb. (Pl. A szomszédban erdõben fekete erdõtalaj van, amit jobban melegít a Nap, mint nálam a szántóföldet, ezért az erdõ fölött fog megindulni a feláramlás, ott alakul ki a zivatar). A nowcasting feladata éppen az, hogy a méréseket figyeli, és abból, hogy hol alakult ki az elsõ zivatarcella, és merre megy, megpróbálja megbecsülni, hogy egy óra múlva hol fog zivatarlánc összeállni. Figyelni kell azt is, ha esetleg a zivatarok olyan helyen indultak meg, ahol nem voltak annyira jók a feltételek a modell szerint, attól még lehet, hogy a valóságban mégis ott lettek jobbak (a vártnál arrébb ment a meleg nedves szállítószalag pl.)
Na, most már jól megkavartalak , csak egy kis ízelítõt próbáltam adni arra, mennyire bonyolult tudomány a meteorológia, a viharvadászat meg pláne. Célom az volt elsõsorban, hogy megmutassam, hogy nagyjából milyen irányban kell továbbhaladni az alapok (dinamikus és szinoptikus meteorológia) után, hogy a viharvadászat szakmai tudományos alapjait megismerd. Remélem, tudtam segíteni .