"Pl a szokásos elektronra vonatkozó kétrés kísérlet: két rés felé küldünk elektronokat egy forrásból, a rés túloldalán egy ernyõvel felfogjuk. Tapasztalat szerint az ernyõn, a fényhez hasonló interferenciakép jelenik meg. Ezzel próbálják magyarázni ,hogy az elektron is hullám. A gond ott van, hogy akkor is megjelenik az interferenciakép, ha egyesével küldik át az elektronokat. Felteszik a nagy kérdést: hogy tud az elektron hullámként viselkedni, honnan tudja, hogy nyitva van e a másik rés."


A gond ott van, ha a kísérlet közben megmérjük, hogy az adott elektron, vagy foton melyik résen halad keresztül, akkor az interferenciakép összeomlik és helyette 2 gauss görbe lesz, mintha az elektron/foton részecske volna, eme témákkal kapcsolatosan a "konkurrens" oldalon kísérleteznek cikkeznek kvantum-radar címszó alatt.

Ami érdekes a káoszelmélet alapjaiban s itt ezt nem szeretném nagyon részletezni,, csak nagy vonalakban, hogy a rendszer ilyen viselkedését kevéssé a kvantummechanikában keresik, a kvantummechanika egyébként azért nem lenne jó irány, mert szintén egy adott léptékû rendszer viselkedését modellezzük, rengeteg peremfeltétel rögzítése mellett, hogy számunkra felfoghatóbb legyen, úgy mint a Newtoni fizikában, nos ezek a peremfeltételek elveszik azt a "szabadsági fokát" a rendszernek ami által az kaotikusan viselkedne, illetve az ilyen viselkedését léptékét mennyiségileg annyira lecsökkenti, hogy ennek elhanyagolása mellett a valóságot jól meg tudjuk közelíteni matematikai/statisztikai módszerekkel. Tehát a káoszelmélet kutatásánál abból indulnak ki, hogy vannak rendszert leíró diff egyenletek, amelyek olyan gerjesztést írnak le, amelyek egy adott rendszert hajtanak, másik diff egyenletek pedig ellentétes irányú/ fékezõ gerjesztést írnak le. Mindkét függvény oly módon nemlineáris hogy nem alakul ki stabil állapota, úgynevezett "munkapont", így vizualizálva egy függvény görbéje mentén egy másik hatására mozgunk, majd egy másik függvény görbéjén fogunk mozogni ennek a függvénynek hatására, valamelyik irányban. Ez már egy kb 3D, 3 függvényes rendszerben is lehet kaotikus, de a valóság ennél több dimenzióban mûködik, egy folytonos függvényen ahol elvileg lehetetlen, hogy valamikor is ugyanabba a térbeli pontba jussunk vissza, így egy adott folyamat pontos megismétlõdése gyakorlatilag lehetetlen. Onnantól, hogy egyszer is ugyanabba az állapotba jutnánk vissza, a függvény periodikussá válik, azaz múlt alapján elõrejelezhetõvé. (Ennek ellenére kisebb szegmensei viselkedhetnek annyira hasonlóan, hogy egy idõre statisztikai úton leírható elõrejelzést adhatunk) Ha ezt modellezzük, végtelen számú pontot nem tudunk felvenni, csak nagyon nagy számú, végeset.
Ezzel nagyjából hasonlóan viselkedõ "végeselemû" rendszert hozunk létre, de nem ugyanazt, azaz lényegében nem is kaotikusat, csak a mi léptékünkben annak tûnõt, és a kimenetek is eltérõek lesznek az eredetitõl. Hogy mennyi idõ múlva, mennyire tér el, azt a kezdeti paraméterekre való érzékenység szabja meg.